Intro to deep learning notes
This is a note for MIT 6.S191 course
link
course 1. Intro to deep learning The Perceptron: Forward Propagation
Single layer neural network with tensorflow:
from tf.keras.layers import * inputs = Inputs(m) hidden = Dense(d1)(inputs) outputs = Dense(d2)(hidden) model = Model(inputs, outputs) This four lines of code computes the single layer NN.
Deep Neural Network
More hidden layers
Applying Neural Networks
Quantifying Loss
Compare Predicted loss vs actual loss
Minimize loss
Different loss functions
Binary cross entropy loss loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits( model.y, model.pred )) Mean squared error loss loss = tf.